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Abstract
Using a thermodynamic model, linear stability analysis is performed on the associated dynamic
Ginsburg–Landau equation for a ferroelectric nanotube. Analytic expressions of the transition
temperature and Curie–Weiss relation are derived. The ferroelectric properties of the tube are
found to generally depend on its dimensions through effects of the surface tension and
near-surface eigenstrain relaxation. Our results also show that the transition temperature and
polarization are both enhanced due to the dominance of the effective radial pressures induced
by the surface tension, resulting in a remnant polarization and coercive field that may become
larger than the bulk values.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Research on ferroelectric nanostructures is experiencing a
rapid surge of interest due to their potential usefulness
in applications such as nanoscale piezoelectric transducers,
electro-optic devices, nonvolatile memory devices, etc. Theory
and experiments on ferroelectric thin films (TFs), nanoparticles
(NPs), nanowires (NWs), nanorods (NRs), nanodisks (NDs)
and nanotubes (NTs) all indicate strong surface effects on their
polarization [1–16]. This is expected because the large surface
to volume ratio in such cases naturally leads to strong surface
effects. Indeed, the tendency to minimize the surface energy
introduces a large intrinsic surface stress, i.e. surface tension,
in samples of nanodimension, and is one of the most important
surface effects considered. The role of surface tension may be
seen from the significant polarization enhancement of PBST
(Pb0.25Ba0.15Sr0.6TiO3) in nanotube form compared with that
in thin-film form [1]. In another case, a giant reversible
piezoelectric strain in a 70 nm diameter PbZr0.2Ti0.8O3 NW
was observed [6] in the presence of a large compressive stress
due to the surface tension. In ultra-small PbZr0.52Ti0.48O3

NRs and NTs with radii R between 20 and 30 nm and length

50 μm, a rectangular shaped piezoelectric hysteresis loop was
observed with an effective remnant piezoelectric coefficient
comparable with that typically found in PZT films. By using
x-ray diffraction (XRD), Uchino et al [12] investigated the
effect of particle size on the Curie temperature of BaTiO3.
The abrupt change of the Curie temperature with the observed
particle size was found to corroborate the large compressive
pressure induced by the surface tension. Theoretically, Huang
et al [10, 11] considered the effect of bond contraction on the
surface layers of NPs, which induces a compressive stress on
the inner part. The phase transition and other ferroelectric
properties of NPs are also found to be size dependent.

The proximity of the surface is also known to
affect the polarization of a ferroelectric sample. Indeed,
since the polarization is derived from the eigenstrain
(transformation strain) associated with the structural instability
of the crystal lattice, it naturally varies according to the
atomistic environment of the location under consideration.
The large disruption of crystalline uniformity near the
surface is expected to affect the eigenstrain and hence
the polarization. This effect of surface relaxation on
the spontaneous polarization has been modeled using an

0953-8984/08/135216+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/13/135216
mailto:yuezheng@hit.edu.cn
mailto:chung.woo@polyu.edu.hk
http://stacks.iop.org/JPhysCM/20/135216


J. Phys.: Condens. Matter 20 (2008) 135216 Y Zheng et al

extrapolating length by many of the theoretical investigations
of the ferroelectric properties of the TFs, NPs, NWs and
NRs based on the Landau phenomenological theory. Thus,
Zhong et al [9] investigated the size effect on the Curie
temperature and polarization of a spherical NP and found
a diminishing polarization and Curie temperature as the
extrapolation length decreases. Using the direct variational
method [13, 14], an approximate analytical expression for the
paraelectric–ferroelectric transition temperatures for NRs and
NWs has been derived as a function of size, extrapolation
length and effective surface tension. Using first-principle
calculations, Fu et al [8] investigated the polarization and Curie
temperature of one-dimensional ferroelectric NWs and found
that the polarization and Curie temperature of NWs was size
dependent, and that ferroelectricity disappeared completely
when the radius of the NW was reduced below a critical value.

Both effects alter the free energy of a bulk ferroelectric,
causing the phase transition temperature to shift and
polarization to change [13, 15]. This forms the subject of
the present study. In the following, using a thermodynamic
model and linear stability analysis of the associated dynamic
equation, analytic expressions of the transition temperature
and Curie–Weiss relation of ferroelectric NTs are derived
and analyzed, paying particular attention to the effects of the
surface tension and surface relaxation. We shall consider the
transition temperature and Curie–Weiss relation as a function
of tube dimensions through the actions of the surface tension,
polarization gradient coefficient, extrapolation length, and
electrostriction coefficient. The implications of the results will
be considered and discussed.

2. Formulation

2.1. The system free energy

As in our previous calculations, the order parameter we
use to describe the transition between the paraelectric and
ferroelectric phases is the self-polarization [16–18] P =
(0, 0, P). P is the result of the permanent atomic
displacements responsible for the spontaneous polarization
generated when a crystal becomes unstable, for example
going through a phase transformation. It is a function of
the sample temperature, as well as other variables such as
electric field and mechanical stresses. In the absence of the
external field and depolarization field, P is the spontaneous
polarization of an infinite crystal, which we use as our
reference state. At stable equilibrium positions, i.e. far
from unstable atomic configurations, an electric field E can
also induce a polarization PE proportion to E via small
non-permanent atomic displacements that vanishes upon the
removal of E. The directly measurable polarization PT

can be written as the sum of P and PE . Since small
atomic displacements are involved, PE may be assumed to
be linearly proportional to E with a constant susceptibility χd

that is characteristic of the current phase of the background
material [15–21]. The electric displacement is then given by

D = ε0E + PT = ε0E + PE + P

= ε0E + χdE + P = εdE + P, (1)

where ε0 are dielectric constants of the vacuum. εd is the
dielectric constant of the current phase of the background
material. When we consider the effect of the depolarization
field, E is the sum of the external electric field Eext and the
depolarization field Ed. Indeed, in the absence of an external
electric field, the total electric field has only one contribution,
that is the depolarization field Ed, i.e. E = Ed, and the electric
displacement is given by

D = ε0Ed + PT = ε0Ed + PE + P

= ε0Ed + χdEd + P = εdEd + P. (2)

In the following, we consider the simplified one-
dimensional case where all vector fields are directed in the z-
direction and susceptibilities and permittivities are diagonal,
so that all vectors in the foregoing can be represented by their
magnitudes. In general, the polarization does not necessarily
concentrate along the z direction, and the radial components
should be considered. In our paper, however, we are mainly
concerned in a qualitative sense with effects caused by the
large surface to volume ratio in a ferroelectric nanotube, and
the physical reasons behind them. In such cases, a reasonable
simplifying assumption of the polarization directions relative
to the specimen geometry may be justifiable, particularly in
view of the complications in the formulation and computation,
which can be avoided. Indeed, under short-circuit electric
boundary conditions, under the effective radial pressures due
to the surface tension, the polarization is easily aligned along
the z direction [13].

Based on Landau–Ginzburg–Devonshire (LGD) theory,
the total free energy of a ferroelectric can be expressed as

F = Fbulk + Fgrad + FEle + Fs, (3)

where Fbulk, Fgrad, FEle and Fs are the bulk energy, gradient
energy, electric field and surface energy, respectively.

The free energy density expansion on the order parameter
P for a field-free (i.e. E = 0 and P E = 0) infinite ferroelectric
under mechanical stresses σi j is given by

fbulk = α0

2
(T − Tc0)P2 + β

4
P4 + γ

6
P6

− Q12(σ11 + σ22)P2 − Q11σ33 P2 − f (σi j), (4)

where α0, β and γ are the expansion coefficients of the
Landau free energy. Tc0 is the Curie–Weiss temperature of
the bulk material, Qi j the electrostriction tensor and f (σi j ) =
1
2 si jklσi jσkl a function of only external stresses [22].

In the following, we consider the specific case of a
ferroelectric NT with inner radius a, outer radius b, average
radius R = (a + b)/2, length h and wall thickness w as shown
in figures 1(b) and (c). We use a cylindrical co-ordinate system
in which the major component of the polarization is along the
z direction.

The surface tension creates a radial compression of the NT.
The first term Fbulk of equation (3) in cylindrical coordinates
(r, ϕ, z) then becomes

Fp = 2π

∫ h/2

−h/2
dz

∫ b

a
rdr

{
ασ

2
P2(r, z) + β

4
P4(r, z)

+ γ

6
P6(r, z) − f (σi j)

}
. (5)
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Figure 1. Schematic diagrams of the stress field in the thick-wall tube problem under applied inner and outer radial pressures.

The expression of ασ is given by [13, 23]

ασ = α0(T − Tc0) − 2Q12(σrr + σϕϕ) − Q11σzz, (6)

where σrr and σϕϕ are the radial and tangential components of
the stress field in the NT induced by the surface tension. These
will be furthered discussed in the next section.

The Ginzburg gradient term Fgrad in the free energy
expression equation (3) becomes significant in the nanoscale
and must be included in our present calculation, where it can
be written as [13, 14, 24]

Fgrad = 2π

∫ h/2

−h/2
dz

∫ b

a
rdr

{
D

2
[∇ P (r, z)]2

}
, (7)

D can be approximated as ξ 2|α(T − Tc0)|, where ξ is a
characteristic length along which the polarization varies.

In the absence of an external electric field, the third term
of equation (3) accounts for the electric energy due to the
depolarization field Ed along the z direction. The third term
should be expressed as [16]

FEle = 2π

∫ h/2

−h/2
dz

∫ b

a
r dr

{− 1
2 Ed PT (r, z)

}
. (8)

In the present study, we only consider the short-circuit
boundary condition, which can be derived by solving the
electrostatic equilibrium, such as for an NW in [13].
Nevertheless, we may assume that the depolarization field
along z direction can be neglected because the NT is long. So
the polarization P E induced by the depolarization field can be
neglected.

The last term Fs of equation (3) accounts for surface
contributions to the total free energy. Taking into account
contributions from the top, bottom and sidewalls, Fs can be
expressed as [13, 23]

Fs = D
∫ b

a

2πr

δend

[
P2(r, z = h/2) + P2(r, z = −h/2)

]
dr

+ D
∫ h/2

−h/2

2πa

δ
P2(r = a, z) dz

+ D
∫ h/2

−h/2

2πb

δ
P2(r = b, z) dz, (9)

where δend and δ are the extrapolation lengths at the end
surfaces and the sidewall of the nanotube, respectively.
As discussed, the extrapolation length takes into account

surface effects on the polarization. Two separate cases
may be considered: (i) the more common case δ > 0,
which corresponds to a reduction of polarization near the
surface; and (ii) the rarer case δ < 0, corresponding to an
enhancement. We note that in general δ is not a constant,
and should be determined experimentally or by first-principle
calculations for different ferroelectric materials and boundary
conditions [24, 25].

2.2. Surface tension in nanoscale ferroelectric tube

Nanocrystals generally have a large surface to volume ratio.
The tendency to minimize the surface energy density is often
sufficiently large to significantly affect the properties of the
nanocrystal. Experimentally, Ma et al [5] and Uchino et al
[12] noted that the effects of surface tension on a nanocrystal
are analogous to a hydrostatic pressure on a bulk single crystal.

For ferroelectric NWs, NRs or NPs, surface effects
expressed in terms of the extrapolation length can change
the polarization near surfaces and associated properties.
At the same time, the surface tension produces a radial
pressure, which is expected to affect properties such as
Curie temperature, polarization and dielectric constant, etc,
similar to an effective radial compression. Based on the
Landau–Devonshire equation, Huang et al [10, 11] investigated
the effect of grain size on ferroelectric nanoparticles in
solid solution. They considered a compressive stress inside
a ferroelectric spherical particle caused by surface bond
contraction. Morozovska et al [13, 26] found that the surface
tension in finite-size NRs/NWs/NDs played a role similar to an
epitaxial stress in thin films. The uniform radial stress due to
the surface tension μ/R in an NR, with surface energy density
μ and radius R, compresses the NR in the transverse direction
and stretches it along the polar axis z. Recently, Zhou et al
[6] also illustrated the effect of the surface tension and internal
compressive stress on the properties of ferroelectric NWs. By a
similar reasoning, surface tension in a ferroelectric NT should
also experience similar effects.

The linear elastic problem of a thick-wall tube under
radial pressures pa and pb at the inner and outer surfaces (see
figure 1) has been solved by Lame [27]. The resulting stress
field can be expressed in cylindrical coordinates (r, ϕ, z) as

3
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Figure 2. Schematic diagrams of an NT under the effective radial pressures pa = −μa/a and pb = μb/b induced by the surface tension.

follows:

σrr (r) = a2

b2 − a2

(
1 − b2

r 2

)
pa − b2

b2 − a2

(
1 − a2

r 2

)
pb,

σϕϕ(r) = a2

b2 − a2

(
1 + b2

r 2

)
pa − b2

b2 − a2

(
1 + a2

r 2

)
pb,

σrϕ = 0, σrz = 0, σzz = 0, σzϕ = 0,

(10)
For the NT, the radial stresses pa and pb in equation (10)

can be approximately expressed in terms of the surface energy
densities μa and μb, i.e. pa = −μa/a and pb = μb/b (see
figure 2) [28]. We note that when the inner radius a of the
NT is zero, equation (10) reduces to the stress field of an NR
(i.e. a = 0 and b = R), which has been discussed in [13, 14].

From equations (5) and (9), the normalized coefficient
ασ (T ) can be rewritten in terms of the surface tension σst,

ασ = α0(T − Tc0) − 2Q12σst, (11)

where σst is a function of the inner and outer radii, and can be
expressed as

σst = σrr + σϕϕ = a2

b2 − a2
pa − b2

b2 − a2
pb

= − aμa + bμb

b2 − a2
= − μ̄

w
− 
μ

2R
, (12)

where μ̄ is the average surface energy density and 
μ =
(μb − μa)/2. The minus sign in equation (12) indicates a
compression. We also note that equation (12) is inapplicable
when b ≈ a because the magnitude of the stresses would
have exceeded the validity of elasticity theory, and plastic
yielding would have occurred. Assuming a simple elastic–
plastic model with a yield stress σY, we may rewrite ασ (T )

in the form [29, 30]

ασ (T, a, b) = α0(T − Tc0) − 2Q12σ
eff
st , (13)

with an effective stress due to the surface tension defined as

σ eff
st =

⎧⎪⎨
⎪⎩

− μ̄

w

(
1 + w
μ

2Rμ̄

)
for w > wY

−σY for w � wY ,

(14)

where wY is the thickness below which plastic yield occurs.
Of course, we can construct an approximated function based
on equation (14) to fit the effective stress, which can be given
by σ eff

st = −σY[1 − exp(−wY/w)]. The use of σ eff
st helps us

avoid the unphysical divergence at b ≈ a. We note that if
|w
μ

2Rμ̄
| � 1, which is usually satisfied, σ eff

st is independent
of the average tube radius R, and any size dependence of the
ferroelectric properties of the tube is dominated by the wall
thickness and the extrapolation length. We note that effects
on the polarization due to the strain fields on the dislocations
generated at the yield may be important, but is a complicated
problem that has to be considered as an issue on its own.

2.3. Phase transition temperature, Curie–Weiss relation and
polarization

The time evolution of the system is governed by the time-
dependent Ginzburg–Landau (TDGL) equation [7, 8]. Using
equations (3) and (13), this can be written as

∂ P

∂ t
= −M

δF

δP
= −M

{
ασ (T, r)P(r) + β P3(r)

+ γ P5(r) − D
1

r

∂

∂r

(
r
∂ P(r)

∂r

)}
, (15)

where M is the kinetic coefficient related to the domain wall
mobility, and δF/δP is the thermodynamic force driving the
spatial and temporal evolution. We note that in equation (15)
the depolarization field has been neglected because of the long
ferroelectric NT being only considered in this section.

4
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The surface term in equation (9) yields the boundary
conditions [13, 17]

∂ P

∂r
= P

δ
, for r = a, and

∂ P

∂r
= − P

δ
, for r = b.

(16)

Equation (15) has a trivial solution P = 0, representing
the stationary paraelectric state. To be able to transform
between the paraelectric (P = 0) and the ferroelectric (P �= 0)
states, the initial state must become dynamically unstable.
The dynamical stability of the initial state can be probed
by applying a small perturbation 
 to the corresponding
stationary solution of equation (15). The dynamics of 


follows from equation (15) by retaining only terms linear in

, which is given by

∂


∂ t
= −M

[
ασ 
 + 3β P3
 + 6γ P5
 − D

1

r

∂

∂r

(
r
∂


∂r

)]
.

(17)
In the general case equation (17) must be solved by using

the Bessel functions. For simplicity, we only approximately
assume that the gradient term in the thin wall of NT is the same
as it is in thin film [18]. The boundary condition is the same
as equation (16), only with P replaced by 
. For a symmetric
configuration, the condition d
/dr = 0, at r = a +w/2, must
also hold.

Using the method of separation of variables, the TDGL
equation can be transformed into an eigenvalue problem.
For the P = 0 state, the solution can be written as

c(r, t) = eωctϕωc(r), where ωc is the eigenvalue, and ϕωc(z)
the corresponding eigenfunction of equation (TDGL),

ωc = M[−ασ − Dk2]. (18)

The P = 0 stationary solution is unstable when ωc > 0,
because in this case the perturbation 
 increases exponentially
with time. It can be seen from equation (16) that when
the temperature T is sufficiently high ωc < 0, and the
paraelectric state is stable. When T is sufficiently low, ωc

turns positive and this state is no longer stable, since any small
perturbation 
 will grow exponentially beyond all bounds. The
critical condition, ωc = 0, yields, in this case, the transition
temperature Tc of the film [15, 16, 28, 30],

Tc = Tc0 + 2Q12

α0
σ eff

st − D

α0
k2

c , (19)

where the first term on the RHS is related to the bulk
ferroelectric property, the second term to the surface tension,
and the third term to the lattice relaxation on the surface. While
the last term acts against the transformation by lowering the
transition temperature, the second term may act either way,
depending on the effective radial pressures, i.e. pa and pb.
Here kc depends on the wall thickness w and the extrapolating
length δ, as the smallest non-zero root of the transcendental
equation [15, 18, 26, 29, 30],

cot

(
kcw

2

)
− kcδ = 0. (20)

Analytic solutions of equation (20) have been ob-
tained [15] in our previous calculations for various impor-
tant limits and approximations. Thus, for thin-walled tubes,
i.e. w � δ, k2

c = 2
w(δ+w/6)

, so that equation (19) can be written
as

Tc = Tc0 + 2Q12

α0
σ eff

st − 2D

α0w(δ + w/6)
. (21)

The corresponding critical wall thickness for a positive Tc

is given by

wc ≈ 2D

δ(4Q12σ
eff
st + α0Tc0)

. (22)

When w � δ, solution of equation (20) gives kc = π
w+2δ

and equation (19) for the transition gives

Tc = Tc0 + 2Q12

α0
σ eff

st − D

α0

(
π

w + 2δ

)2

. (23)

Neglecting δ in comparison with w, the corresponding
critical wall thickness for a positive Tc can be easily solved,
and is given by

wc ≈
√

π2 D

(2Q12σ
eff
st + α0Tc0)

. (24)

We note that in both limits of w � δ (small surface
relaxation) and w � δ (large relaxation) the surface effect
due to δ (the third term on the RHS) causes the transition
temperature to decrease monotonically as the wall thickness
w of the tube decreases, while the surface tension has the
opposite effect, except when the wall thickness is below wY.
As w < 2R always holds, for 
μ

μ̄
� 1, σ eff

st is independent of
R and both Tc and wc are independent of R.

The susceptibility χ can be expressed as a function of P
via the total free energy density ftotal of the NT,

χ−1 =
(

∂2 ftotal

∂ P2

)
= α0 (T − Tc) + 3β P2 + 5γ P4, (25)

where Tc is the phase transition temperature of the NT as given
by equation (19). Using equation (25), a Curie–Weiss-type
relation of the spatial average 〈χ〉 of a ferroelectric NT near the
Curie temperature can be expressed in the following form [18]:

〈χ〉 =

⎧⎪⎪⎨
⎪⎪⎩

�−1 (δ,w)

α0 |T − Tc| for T < Tc,

1

α0 |T − Tc| for T > Tc,

(26)

where �(δ,w) is the Curie–Weiss parameter as a function of
the extrapolation length and wall thickness of the tube. Based
on our previous calculations in [18], an approximated equation
of the Curie–Weiss parameter can be obtained.

It is also of interest to directly evaluate the strength of the
polarization. In terms of the Curie–Weiss relation, the spatially
averaged free energy density can be written as


F = α0

2
(T − Tc)P̄2 + β

4
P̄4 + γ

6
P̄6 − f (σi j ), (27)

5
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where Tc is the phase transition temperature of the tube from
equation (19), as a function of its wall thickness, radius and
extrapolation length. Here we note that P̄ is a spatial average.

Using the variational method, free energy minimization
with respect to P̄ yields the following equation [13, 26–33]:

α0 [T − Tc (R, w, δ)] P̄ + β P̄3 + γ P̄5 = 0, (28)

which must be satisfied by P̄ , yielding

P̄ =
⎡
⎣−β ±

√
β2 − 4α0γ

[
T − Tc (R, w, δ)c

]
2γ

⎤
⎦

1/2

, (29)

as a function of the wall thickness, radius and extrapolation
length of the ferroelectric NT.

2.4. Polarization switching

Many experiments indicate that the surface tension may
produce a large enhancement of the ferroelectric properties
of an NT, such as the remnant polarization and the coercive
field [1, 2]. In the following, we study polarization switching
and hysteresis loops in a ferroelectric NT by considering its
response to a sinusoidal electric field applied along the z
direction [19–23],

Eext = E0 sin

(
2π t

Tp

)
= E0 sin(2π f ′t). (30)

Here E0, Tp and f ′ are the amplitude, period and circular
frequency, respectively. From equation (15), the time evolution
of the polarization can be calculated numerically from TDGL
with this sinusoidal electric field. A finite-difference method
for spatial derivatives and the Runge–Kutta method for
temporal derivatives are employed [17–20]. We note that the
effects of the induced polarization by the external electric field
together with the corresponding electrostrictive stresses are
also included. So the total polarization is the sum of the self-
polarization and induced polarization of equation (1).

3. Results and discussions

The analytical and numerical calculations in this paper are
for BaTiO3 (BTO) nanotubes, which have been successfully
fabricated and implemented in various devices, such as
capacitor and nonvolatile memories etc [2, 4, 29]. We only
consider the case of a long tube with length h much larger than
its inner/outer radius, so that the depolarization field can be
neglected [12, 13, 15], thus allowing us to concentrate on the
effects of the surface tension.

3.1. The transition temperature, Curie–Weiss law, and
polarization

We first consider, as in [5, 13, 19, 34], the ideal case where
the difference between the surface energy densities of the inner
and outer surfaces is negligible, i.e. 
μ ≈ 0. Since typical
values of the effective surface tension coefficient vary between
5 and 50 N m−1 [5, 13], we use a value of μa = μb = μ =
20 N m−1. Other material constants, such as the electrostrictive

Figure 3. The phase transition temperature Tc versus the wall
thickness w of an NT, where the inner radius is a = 10 nm,
considering the surface tension effect (black line) and without
considering the surface tension effect (blue line).

coefficients, the extrapolation length and the elastic properties,
are from the literature [9, 16, 19, 22, 28, 35].

Phase transition temperatures Tc are calculated for various
wall thicknesses w of an NT with inner radius a = 10 nm
by solving equations (19) and (20). The results are plotted
in figure 3, as a function of w. The important feature that
can immediately be discerned is the maximum shown by Tc

at T max
c ≈ 580 K for a wall thickness of w ≈ 8.5 nm.

Furthermore, for wall thickness larger than ∼4 nm, Tc is
actually higher than that of the bulk material at 400 K.

For comparison, the calculation was repeated without the
surface tension contributions, i.e. by setting μ = 0 N m−1,
and plotted as the blue line in figure 3. It can be seen
from the comparison that the surface tension is responsible
for the rise of the transition temperature, with a magnitude
that tends to increase with the increasing surface tension as
w decreases. As the compression due to the surface tension
stops increasing beyond the elastic limit, the effects of the near-
surface eigenstrain relaxation described by the extrapolation
length δ starts to dominate and lower the transition temperature
as w decreases (see equations (21) and (23)). As a result,
the rise in Tc shows a maximum of T max

c ≈ 580 K at a wall
thickness of w ≈ 8.5 nm. According to these results, in
addition to materials constants such as the Landau free energy
parameters, the surface energy density and extrapolation
length, the transition temperature of the NT is also sensitive
to geometry parameters such as the wall thickness w.

In comparison with thin films, the operation of the surface
tension leads to the following important differences: (1) in
contrast to thin films in which the transition temperature
monotonically decreases with decreasing film thickness, the
transition temperature for NTs attains a maximum as the
wall thickness decreases, and (2) the critical thickness for the
disappearance of ferroelectricity in an NT is significantly larger
than that of the thin film, and sometimes even the bulk material.
Similar observations for ferroelectric NWs and thin films have
been discussed in [13, 14, 16, 28].

In pure materials, the surface energy densities between
the inner and outer wall surfaces of the NT are the same,
so that it is reasonable to assume that 
μ ≈ 0. However,
practical considerations sometimes require this condition to be
relaxed, such as in cases where the environments encountered

6
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Figure 4. The phase transition temperature Tc versus the average
radius R, where the inner and outer surface tension coefficient is
considered as a difference, such as 
μ = 10%μ̄, 20%μ̄ and 30%μ̄.

by the inner and outer surfaces are different. We consider that
properties of ferroelectric NTs can be changed by adjusting the
difference of the surface tension coefficients between the inner
and outer surfaces. It is clear from equations (13) and (14)
that in such cases the transition temperature also depends on
the average radius R of the NTs as well as 
μ. In figure 4, we
plot the calculated transition temperature Tc as a function of the
average radius R for different values of 
μ/μ̄. It can be seen
that positive values of 
μ/μ̄ cause an increase of Tc, which
increases as the average tube radius R decreases. The increase
is most rapid for the small-radius tubes with an average tube
radius of less than 10 nm. For a value of 
μ/μ̄ = 30%, the
Tc for a tube with an average radius of 2.5 nm can be higher by
100 K than one at 10 nm. For tube with radii larger than 25 nm,
Tc is relatively insensitive to the tube size.

In addition to raising the transition temperature, the
enhancement of ferroelectricity in NTs via the effects of the
surface tension can also be seen directly from the strength of
the average polarization. Solving equations (28) and (29), we
obtain the average polarization for a BTO NT of inner radius
a = 10 nm and surface energy density μ = 20 N m−1 as a
function of wall thickness w, which we plot in figure 5. The
blue line shows similar results obtained without considering
surface tension (i.e. μ = 0 N m). The enhancement effect
of the polarization due to the surface tension is obvious, and
follows the same trend as the transition temperature, reaching
a maximum near w = 8 nm, at which point the stress in
the tube caused by the surface tension maximizes at the yield
point. The results in figure 5 also demonstrate directly the
existence of a critical wall thickness wc of about 3.2 nm at 0 K,
below which the polarization disappears. In figure 6, we show
the corresponding plot of the polarization as a function of the
average tube radius R for various values of 
μ. The similarity
between figures 4 and 6 is obvious.

Following Wang and Woo [18], we use a perturbation
approach to solve equations (25) and (26), from which a
Curie–Weiss-type relation of the dielectric permittivity can be
obtained for a BTO NT with different wall thickness near the
transition temperature (figure 7).

The results of figures 5–7 clearly show that the phase
transition temperature, polarization and susceptibility are all
controllable via various geometric factors of the NT. In

Figure 5. The polarization versus the wall thickness of NT at room
temperature, where the inner radius is a = 10 nm, considering the
surface tension effect (black line) and without considering the
surface tension effect (blue line).

Figure 6. The polarization versus the average radius R, where the
inner and outer surface tension coefficient is considered as a
difference, such as 
μ = 10%μ̄, 20%μ̄ and 30%μ̄.

Figure 7. The Curie–Weiss-type relation in ferroelectric NTs, where
the wall thickness is w = 2.5 nm, 5 nm and 10 nm, respectively.

evaluating the normalized susceptibility, �−1(δ,w)/(T − Tc),
the transition temperature Tc is from result of figure 3. It can
be seen that when the ferroelectric NT is in the paraelectric
state (T > Tc) the Curie–Weiss relation is independent of
the geometry of the tube. When the ferroelectric NT is in the
ferroelectric state, the Curie–Weiss relation is a function of the
wall thickness, radius and extrapolation length.

3.2. Polarization switching and hysteresis loops

Many experiments have shown results indicating the possible
importance of the surface tension to the ferroelectric response

7
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Figure 8. Hysteresis loops of the BTO NT at room temperature (the
inner radius, outer radius and wall thickness are a = 10 nm,
b = 30 nm and w = 20 nm, respectively), with and without surface
tension effects, shown as filled and open cycles, respectively.

of an NT when subjected to an external field, due to
effects such as the enhancement of remnant polarization
and the coercive field [1, 2]. To investigate such effects
on polarization switching and hysteresis loops, we solve
the TDGL equation (15) for the polarization response of a
ferroelectric NT under a sinusoidal external electric field Eext

at room temperature and 300 K. The amplitude E0 of the
external field we used is E0 = 1000 kV cm−1. The time step
is 
t = Tp/N with Tp = 3 ns and the total number of time
steps N within a period Tp is 5000. We use the finite-difference
method for the spatial integration and the Runge–Kutta method
for temporal integration to solve the TDGL equation in real
space.

In the following, we consider the polarization switching
behavior of the BTO NT. Note that the polarization considered
here is the total polarization, that is, the sum of the self-
polarization and the induced polarization. In figure 8, the
resulting hysteresis loops for the BTO NT with and without
surface tension effect are shown as filled and open cycles,
respectively. For a surface energy density of μ = 20 N m−1,
the hysteresis loop with the surface tension can be clearly
traced by following the filled circles. The effect of the surface
tension on both the remnant polarization and the coercive field
in NT can be clearly seen as enhancements. The main reason
for this enhancement is, as discussed, the electrostrictive effect
of the stresses due to the surface tension. The behavior
of hysteresis loops is consistent with experimental results of
ferroelectric NTs in [1].

Figure 9 shows hysteresis loops at room temperature for
BTO NTs with varying wall thicknesses of w = 10 nm
(solid cycle), 20 nm (solid square) and 30 nm (solid triangle),
respectively. The hysteresis loops can be seen to clearly
depend on wall thickness of NTs. The remnant polarization
and the coercive field can be seen to increase with decreasing
thickness, consistent with the polarization enhancement due to
surface tension.

4. Summary

In this paper, a thermodynamic model for the investigation
of the properties of a ferroelectric NT is established.

Figure 9. Hysteresis loops at room temperature for BTO NTs with
varying wall thicknesses of w = 10 nm (solid cycle), 20 nm (solid
square) and 30 nm (solid triangle), respectively, assuming 
μ = 0.

Based on linear stability analysis and numerical solution
of the time-dependent Ginzburg–Landau evolution equation,
the polarization, phase transition temperature, Curie–Weiss
relation and hysteresis loops of the NT are calculated, and
effects of the surface tension and the near-surface eigenstrain
relaxation are investigated. Our results show that the two
effects influence the ferroelectricity of the NT in opposite
ways. The former tends to increase, while the latter to
reduce, the ferroelectricity in the tube as its wall thickness
decreases. As a result, the ferroelectric behavior of the
NT depends on the details of how these two effects, which
depend on material properties in different ways, are balanced.
Elastic, as well as plastic, properties of the material are both
found to be important. In addition to the material properties,
geometric factors such as the wall thickness are found to be
convenient design parameters. For the BTO NT considered
here, the surface tension seems to be the stronger of the two
surface effects, producing a general increase of the ferroelectric
polarization in the NT above the bulk values as the wall
thickness decreases. A similar behavior also applies to the
remnant polarization and the coercive field of the hysteresis
loop. Other effects such as those related to the electric
boundary conditions and dislocation generation are out of our
present scope, and have to be considered in further work.
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